skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tsujimoto, Takuji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The flux spectrum, event rate, and experimental sensitivity are investigated for the diffuse supernova (SN) neutrino background (DSNB), which originates from past stellar collapses and is also known as a supernova relic neutrino background. For this purpose, the contribution of collapses that lead to successful supernova explosion and black hole (BH) formation simultaneously, which are suggested to be a nonnegligible population from the perspective of Galactic chemical evolution, is taken into account. If the BH-forming SNe involve matter fallback onto the protoneutron star for the long term, their total emitted neutrino energy becomes much larger than that of ordinary SNe and failed SNe (BH formation without explosion). Then, in the case of the normal mass hierarchy in neutrino oscillations and with half of all core-collapse SNe being BH-forming SNe, the expected event rate according to the current DSNB model is enhanced by up to a factor of 2 due to the BH-forming SNe. While substantial uncertainties exist regarding the duration of the matter fallback, which determines the total amount of emitted neutrinos, and the fraction of BH-forming SNe, the operation time required to detect the DSNB at Hyper-Kamiokande would be reduced by such contribution in any case. 
    more » « less
  2. Abstract The search for Population III stars has fascinated and eluded astrophysicists for decades. One promising place for capturing evidence of their presence must be high-redshift objects; signatures should be recorded in their characteristic chemical abundances. We deduce the Fe and Mg abundances of the broadline region (BLR) from the intensities of ultraviolet Mg ii and Fe ii emission lines in the near-infrared spectrum of UKIDSS Large Area Survey (ULAS) J1342+0928 at z = 7.54, by advancing our novel flux-to-abundance conversion method developed for quasars up to z ∼ 3. We find that the BLR of this quasar is extremely enriched, by a factor of 20 relative to the solar Fe abundance, together with a very low Mg/Fe abundance ratio: [Fe/H] = +1.36 ± 0.19 and [Mg/Fe] =−1.11 ± 0.12, only 700 million years after the Big Bang. We conclude that such an unusual abundance feature cannot be explained by the standard view of chemical evolution that considers only the contributions from canonical supernovae. While there remains uncertainty in the high-mass end of the Population III initial mass function, here we propose that the larger amount of iron in ULAS J1342+0928 was supplied by a pair-instability supernova (PISN) caused by the explosion of a massive Population III star in the high-mass end of the possible range of 150–300 M ⊙ . Chemical evolution models based on initial PISN enrichment well explain the trend in [Mg/Fe]- z all the way from z < 3 to z = 7.54. We predict that stars with very low [Mg/Fe] at all metallicities are hidden in the galaxy, and they will be efficiently discovered by ongoing new-generation photometric surveys. 
    more » « less